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Introduction

In this lecture we discuss the logistic regression model,
generalized linear models, and some applications.
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Some Basic Background
An Underlying Normal Variable

Probability Theory Background

Before beginning our discussion of logistic regression, it will
help us to recall and have close at hand a couple of fundamental
results in probability theory.
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A Binary 0,1 (Bernoulli) Random Variable I

Suppose a random variable Y takes on values 1,0 with
probabilities p and 1− p, respectively.

Then Y has a mean of

E (Y ) = p

and a variance of
σ2

y = p(1− p)
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Proof I

Proof.
1 Recall from Psychology 310 that the expected value of a

discrete random variable Y is given by

E (Y ) =
K∑

i=1

yi Pr(yi)

That is, to compute the expected value, you simply take
the sum of cross-products of the outcomes and their
probabilities. There is only one nonzero outcome, 1, and it
has a probability of p.
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Proof II

2 When a variable Y takes on only the values 0 and 1, then
Y = Y 2. So E (Y ) = E (Y 2). But one formula for the
variance of a random variable is σ2

y = E (Y 2)− (E (Y ))2,
which is equal in this case to

σ2
y = p − p2 = p(1− p)
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Conditional Distributions in the Bivariate Normal Case

If two variables W and X are bivariate normal with regression
line Ŵ = β1X + β0, and correlation ρ, the conditional
distribution of W given X = a has mean β1a + β0 and standard
deviation σε =

√
1− ρ2σw .

If we assume X and W are in standard score form, then the
conditional mean is

µw |x=a = ρa

and the conditional standard deviation is

σε =
√

1− ρ2
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An Underlying Normal Variable

It is easy to imagine a continuous normal random variable W
underlying a discrete observed Bernoulli random variable Y .
Life is full of situations where an underlying continuum is
scored “pass-fail.”

Let’s examine the statistics of this situation.
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An Underlying Normal Variable

As a simple example, imagine that:
1 The distribution of scores on variable W has a standard

deviation of 1, but varies in its mean depending on some
other circumstance

2 There is a cutoff score Xc, and that to succeed, an
individual needs to exceed that cutoff score. That cutoff
score is +1.

3 What percentage of people will succeed if µw = 0?
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An Underlying Normal Variable

Here is the picture: What percentage of people will succeed?

An Underlying Normal Variable

W

−3 −2 −1 0 1 2 3
Xc
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An Underlying Normal Variable

Suppose we wished to plot the probability of success as a
function of µw , the mean of the underlying variable.

Assuming that σ stays constant at 1, and that Wc stays
constant at +1, can you give me an R expression to compute
the probability of success as a function of µw? (C.P.)

Multilevel Logistic Regression



Introduction
The Logistic Regression Model

Binary Logistic Regression
Binomial Logistic Regression

Interpreting Logistic Regression Parameters
Examples

Logistic Regression and Retrospective Studies

Some Basic Background
An Underlying Normal Variable

Plotting the Probability of Success

The plot will look like this:
> curve(1 -pnorm(1,x,1),-2 ,3,
+ xlab=expression(mu[w]),ylab="Pr(Success)")
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Plotting the Probability of Success

Note that the plot is non-linear. Linear regression will not work
well as a model for the variables plotted here.

In fact, a linear regression line will, in general, predict
probabilities less than 0 and greater than 1!
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Plotting the Probability of Success

We can generalize the function we used to plot the previous
figure for the general case where Wc is any value, and µw and
σw are also free to vary.
> Pr.Success ← function(mu_w ,sigma_w ,cutoff)
+ {1 -pnorm(cutoff ,mu_w ,sigma_w )}
> curve(Pr.Success(x,2,1),-3 ,5,
+ xlab=expression(mu[w]),

+ ylab="Pr(Success) when the cutoff is 2")
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Extending to the Bivariate Case

Suppose that we have a continuous predictor X , and a binary
outcome variable Y that in fact has an underlying normal
variable W generating it through a threshold values Wc.
Assume that X and W have a bivariate normal distribution,
are in standard score form, and have a correlation of ρ.

We wish to plot the probability of success as a function of X ,
the predictor variable.
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Predicting Pr(Success) from X

We have everything we need to solve the problem. We can write

π(x ) = Pr(Y = 1|X = x )
= Pr(W > Wc|X = x )

= 1− Φ
(

Wc − µW |X=x

σW |X=x

)
= 1− Φ

(
Wc − ρx√

1− ρ2

)
(1)

= Φ

(
ρx −Wc√

1− ρ2

)
(2)
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Predicting Pr(Success) from X

Note that the previous equation can be written in the form

π(x ) = Φ(β1x + β0) (3)

Not only is the regression line nonlinear, but the variable Y is a
Bernoulli variable with a mean that changes as a function of x ,
and so its variance also varies as a function of x , thus violating
the equal variances assumption.
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Predicting Pr(Success) from X

However, since Φ( ) is invertible, we can write

Φ−1(Pr(Y = 1|X = x )) = Φ−1(µY |X=x )
= β1x + β0

= β′x

This is known as a probit model, but it is also our first example
of a Generalized Linear Model, or GLM. A GLM is a linear
model for a transformed mean of a variable that has a
distribution in the natural exponential family. Since x might
contain several predictors and very little would change, the
extension to multiple predictors is immediate.
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Binary Logistic Regression

Suppose we simply assume that the response variable has a
binary distribution, with probabilities π and 1− π for 1 and 0,
respectively. Then the probability density can be written in the
form

f (y) = πy(1− π)1−y

= (1− π)
(

π

1− π

)y

= (1− π) exp
(

y log
π

1− π

)
(4)
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Binary Logistic Regression

The logit of Y is the logarithm of the odds that Y = 1.
Suppose we believe we can model the logit as a linear function
of X , specifically,

logit(π(x )) = log
Pr(Y = 1|X = x )

1− Pr(Y = 1|X = x )
(5)

= β1x + β0 (6)
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Binary Logistic Regression

The logit function is invertible, and exponentiating both sides,
we get

π(x ) = Pr(Y = 1|x )

=
exp(β1x + β0)

1 + exp(β1x + β0)

=
1

1 + exp(−(β1x + β0))

=
1

1 + exp(−β′x )
(7)

= µY |X=x

Once again, we find that a transformed conditional mean of the
response variable is a linear function of X .
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Extension to Several Predictors

Note that we wrote β1x + β0 as β′x in the preceding equation.

Since X could contain one or several predictors, the extension
to the multivariate case is immediate.
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Binomial Logistic Regression

In binomial logistic regression, instead of predicting the
Bernoulli outcomes on a set of cases as a function of their X
values, we predict a sequence of binomial proportions on I
occasions as a function of the X values for each occasion.
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Binomial Logistic Regression

The mathematics changes very little. The ith occasion has a
probability of success π(xi), which now gives rise to a sample
proportion Y based on mi observations, via the binomial
distribution.

The model is

π(xi) = µY |X=xi =
1

1 + exp−β′xi
(8)
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Interpreting Logistic Regression Parameters

How would we interpret the estimates of the model parameters
in simple binary logistic regression?

Exponentiating both sides of Equation 5 shows that the odds
are an exponential function of x. The odds increase
multiplicatively by exp(β1) for every unit increase in x . So, for
example, if β1 = .5, the odds are multiplied by 1.64 for every
unit increase in x .
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Characteristics of Logistic Regression

Logistic regression predicts the probability of a positive
response, given values on one or more predictors
The plot of y = logit−1(x ) is shaped very much like the
normal distribution cdf
It is S-shaped, and you can see that the slope of the curve
is steepest at the midway point, and that the curve is quite
linear in this region, but very nonlinear in its outer range
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Interpreting Logistic Regression Parameters

If we take the derivative of π(x ) with respect to x , we find that
it is equal to βπ(x )(1− π(x )).

This in turn implies that the steepest slope is at π(x ) = 1/2, at
which x = −β0/β1, and the slope is β1/4.

In toxicology, this is called LD50, because it is the dose at which
the probability of death is 1/2.
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Interpreting Logistic Regression Coefficients

1 Because of the nonlinearity of logit−1, regression coefficients
do not correspond to a fixed change in probability

2 In the center of its range, the logit−1 function is close to
linear, with a slope equal to β/4

3 Consequently, when X is near its mean, a unit change in X
corresponds to approximately a β/4 change in probability

4 In regions further from the center of the range, one can
employ R in several ways to calculate the meaning of the
slope
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Interpreting Logistic Regression Coefficients
An Example

Example (Interpreting a Logistic Regression Coefficient)

Gelman and Hill (p. 81) discuss an example where the fitted
logistic regression is

Pr(Bush Support) = logit−1(.33 Income− 1.40)

Here is their figure 5.1a.
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Example (Interpreting a Logistic Regression Coefficient)

The mean value of income is
> mean(income ,na.rm=TRUE)

[1] 3.075488

Around the value X = .31, the probability is increasing at a
rate of approximately β/4 = .33/4 = .0825. So we can estimate
that on average the probability that a person with income level
4 will support Bush is about 8% higher than the probability
that a person with income level 3 will support Bush.
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Example (Interpreting a Logistic Regression Coefficient)

We can also employ the inverse logit function to obtain a more
refined estimate. If I fit the logistic model, and save the fit in a
fit.1 object, I can perform the calculations on the full
precision coefficients using the invlogit() function, as follows
> inv log i t ( coef (fit.1 )[1] + coef (fit.1 )[2]*3)

(Intercept)
0.3955251

> inv log i t ( coef (fit.1 )[1] + coef (fit.1 )[2]*4)

(Intercept)
0.4754819

> inv log i t ( coef (fit.1 )[1] + coef (fit.1 )[2]*4)-
+ inv log i t ( coef (fit.1 )[1] + coef (fit.1 )[2]*3)

(Intercept)
0.07995678
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Interpreting Logistic Regression Coefficients
We can also interpret a logistic regression coefficient in
terms of odds
Since the coefficient β is linear in the log odds, eβ functions
multiplicatively on odds
That is, around the mean value of 3.1, a unit increase in
income should correspond to an e .326 increase in odds
Let’s check out how that works by doing the calculations
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Example (Interpreting Logistic Regression Coefficients)

We saw in the preceding example that, at a mean income of 3,
the predicted probability of supporting Bush is 0.3955251,
which is an odds value of
> odds.3 = .3955251/(1 -.3955251)
> odds.3

[1] 0.6543284

At an income level of 4, the predicted probability of supporting
Bush is 0.4754819, which is an odds value of
> odds.4 = 0.4754819/(1 -0.4754819)
> odds.4

[1] 0.9065119

The ratio of the odds is the same as eβ.
> odds.4/odds.3

[1] 1.385408

> exp(.3259947)

[1] 1.385408
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Crabs and Their Satellites

Agresti (2002, p. 126) introduces an example based on a
study in Ethology
Each female horseshoe crab has a male crab resident in her
nest
The study investigated factors associated with whether the
fameale crab had any other males, called satellites, residing
nearby
Potential predictors include the female’s color, spine
condition, weight, and carapace width

Multilevel Logistic Regression



Introduction
The Logistic Regression Model

Binary Logistic Regression
Binomial Logistic Regression

Interpreting Logistic Regression Parameters
Examples

Logistic Regression and Retrospective Studies

The Crab Data Example
The Multivariate Crab Data Example
A Crabby Interaction

Predicting a Satellite

The crab data has information on the number of satellites
Suppose we reduce these data to binary form, i.e., Y = 1 if
the female has a satellite, and Y = 0 if she does not
Suppose further that we use logistic regression to form a
model predicting Y from a single predictor X , carapace
width
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Entering the Data

Entering the Data
The raw data are in a text file called Crab.txt.
We can read them in and attach them using the command

> crab.data← read.table ("Crab.txt",header=TRUE)
> attach(crab.data)

Multilevel Logistic Regression



Introduction
The Logistic Regression Model

Binary Logistic Regression
Binomial Logistic Regression

Interpreting Logistic Regression Parameters
Examples

Logistic Regression and Retrospective Studies

The Crab Data Example
The Multivariate Crab Data Example
A Crabby Interaction

Setting Up the Data

Next, we create a binary variable corresponding to whether or
not the female has at least one satellite.
> has.satellite← i f e l s e (Sa > 0,1,0)
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Fitting the Model with R

We now fit the logistic model using R’s GLM module, then
display the results
> fit.logit←glm(has.satellite ˜ W,

+ family=binomial)
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Fitting the Model with R

Estimate Std. Error z value Pr(>|z|)
(Intercept) −12.3508 2.6287 −4.70 0.0000

W 0.4972 0.1017 4.89 0.0000
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Interpreting the Results

Interpreting the Results
Note that the slope parameter b1 = 0.4972 is significant
From our β/4 rule, this indicates that 1 additional unit of
carapace width around the mean value of the latter will
increase the probability of a satellite by about
0.4972/4 = 0.1243
Alternatively, one additional unit of carapace width is
associated with a log-odds multiple of e0.4972 = 1.6441
This corresponds to a 64.41% increase in the odds

Multilevel Logistic Regression



Introduction
The Logistic Regression Model

Binary Logistic Regression
Binomial Logistic Regression

Interpreting Logistic Regression Parameters
Examples

Logistic Regression and Retrospective Studies

The Crab Data Example
The Multivariate Crab Data Example
A Crabby Interaction

Interpreting the Results

Here is a plot of predicted probability of a satellite vs. width of
the carapace.
> curve( inv log i t (b1 * x + b0), 20,35,xlab="Width",ylab="Pr(Has.Satellite)")
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Including Color as Predictor

Dichotomizing Color
The crab data also include data on color, and use it as an
additional (categorical) predictor
In this example, we shall dichotomize this variable, scoring
crabs who are dark 0, those that are not dark 1 with the
following command:

> is.not.dark← i f e l s e (C == 5,0,1)
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Specifying the Model(s)

The Additive Two-Variable Model
The additive model states that

logit(pi) = b0 + b1W + b2C

Let’s fit the original model that includes only width(W),
then fit the model with width(W) and the dichotomized
color(is.not.dark)

> fit.null ← glm(has.satellite ˜ 1, family = binomial)
> fit.W ← glm(has.satellite ˜ W ,
+ family=binomial)
> fit.WC ← glm(has.satellite ˜ W + is.not.dark ,

+ family=binomial)
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Results

Results for the null model:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.5824 0.1585 3.67 0.0002

Results for the simple model with only W:

Estimate Std. Error z value Pr(>|z|)
(Intercept) −12.3508 2.6287 −4.70 0.0000

W 0.4972 0.1017 4.89 0.0000

Results for the additive model with W and C:

Estimate Std. Error z value Pr(>|z|)
(Intercept) −12.9795 2.7272 −4.76 0.0000

W 0.4782 0.1041 4.59 0.0000
is.not.dark 1.3005 0.5259 2.47 0.0134
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Comparing Models

We can compare models with the anova() function
> anova(fit.null ,fit.W ,fit.WC ,test="Chisq")

Resid. Df Resid. Dev Df Deviance P(>|Chi|)
1 172 225.76
2 171 194.45 1 31.31 0.0000
3 170 187.96 1 6.49 0.0108
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Plotting the W + C Model

> b0 ← coef (fit.WC )[1]
> b1 ← coef (fit.WC )[2]
> b2 ← coef (fit.WC )[3]
> curve( inv log i t (b1 * x + b0 + b2), 20,35,xlab="Width",
+ ylab="Pr(Has.Satellite)", col ="red")
> curve( inv log i t (b1 * x + b0), 20,35,lty=2, col ="blue",add=TRUE)
> legend(21,0.9, legend=c("light crabs","dark crabs"),
+ lty = c(1,2), col =c("red","blue"))
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Specifying the Model(s)

The additive model states that

logit(pi) = b0 + b1W + b2C

Let’s add an interaction effect.
> fit.WCi ← glm(has.satellite ˜ W + is.not.dark
+ + W:is.not.dark ,

+ family=binomial)

The result is not significant.

Estimate Std. Error z value Pr(>|z|)
(Intercept) −5.8538 6.6939 −0.87 0.3818

W 0.2004 0.2617 0.77 0.4437
is.not.dark −6.9578 7.3182 −0.95 0.3417

W:is.not.dark 0.3217 0.2857 1.13 0.2600
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An Important Application — Case Control Studies

An important application of logistic regression is the case
control study, in which people are sampled from “case” and
“control” categories and then analyzed (often through their
recollections) for their status on potential predictors.

For example, samples of patients with or without lung cancer
can be sampled, then asked about their smoking behavior.
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Relative Risk

With binary outcomes, there are several kinds of effects we can
assess. Two of the most important are relative risk and the odds
ratio.

Consider a situation where middle aged men either smoke
(X = 1) or do not (X = 0) and either get lung cancer (Y = 1)
or do not (Y = 0). Often the effect we would like to estimate in
epidemiological studies is the relative risk,

Pr(Y = 1|X = 1)
Pr(Y = 1|X = 0)

(9)
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Retrospective Studies

In retrospective studies we ask people in various criterion groups
to “look back” and indicate whether or not they engaged in
various behaviors.

For example, we can take a sample of lung cancer patients and
ask them if they ever smoked, then take a matched sample of
patients without lung cancer and ask them if they smoked.

After gathering the data, we would then have estimates of
Pr(X = 1|Y = 1), Pr(X = 0|Y = 1) Pr(X = 1|Y = 0),and
Pr(X = 1|Y = 0).

Notice that these are not the conditional probabilities we need
to estimate relative risk!
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The Odds Ratio

An alternative way of expressing the impact of smoking is the
odds ratio, the ratio of the odds of cancer for smokers and
nonsmokers. This is given by

Pr(Y = 1|X = 1)/1− Pr(Y = 1|X = 1)
Pr(Y = 1|X = 0)/1− Pr(Y = 1|X = 0)

(10)
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Some Key Identities

By repeatedly employing
1 The definition of conditional probability, i.e.,

Pr(A|B) = Pr(A ∩ B) Pr(B) = Pr(B ∩A) Pr(B)
2 The fact that A ∩ B = B ∩A

it is easy to show that

Pr(Y = 1|X = 1)/(1− Pr(Y = 1|X = 1))
Pr(Y = 1|X = 0)/(1− Pr(Y = 1|X = 0))

=
Pr(X = 1|Y = 1)/(1− Pr(X = 1|Y = 1))
Pr(X = 1|Y = 0)/(1− Pr(X = 1|Y = 0))

(11)
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Some Key Identities

Equation 11 demonstrates that the information about odds
ratios is available in retrospective studies with representative
sampling.

Furthermore, suppose that an outcome variable Y fits a logistic
regression model logit(Y ) = β1X + β0. As Agresti (2002, p.
170–171) demonstrates, it is possible to correctly estimate β1 in
a retrospective case-control study where Y is fixed and X is
random. The resulting fit will have a modified intercept
β∗0 = log(p1/p0) + β0, where p1 and p0 are the respective
sampling probabilities for Y = 1 cases and Y = 0 controls.
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